Kleines Einfamilien Wasserpumpsystem
Berechnungen für Solarlektrifizierung
1
Pumpe (1/2 PS)
500
0,4

Wh / Tag
167

167
500

Total =
Beispiel E:  Kleines Einfamilien Wasserpumpsystem
5 Personen mit 100 l/d bis zu einer Höhe von 20 m
167

193

0,9


14


0,1


0,2


0,4
330 - 495 US$

73 - 293 US$

32 - 60 US$

800 - 2000 US$



0 US$

1235 - 2848 US$
Für die Berechnungen des Energieverbrauchs sollte man sich immer nach der elektrischen Anschlussleistung richten und nicht nach einer "übersetzten" PS Leistung.
Hier ist es auch wichtig, dass bei Motoren und Pumpen ein Unterschied zwischen der Nominalleistung (ohne Last) und der maximales Leistung (unter Last) besteht.
In diesem Beispiel arbeiten wir mit einer Pumpe mit 500 W maximaler elektrischer Leistung.

Bei der Auswahl der Pumpe in einem Solarsystem gibt es zwei wichtige Kriterien:
Die gepumpte WASSERMENGE oder FLUSS in der Höhe des Speichertanks oder der Verbraucher. Man sollte die Gesamthöhe zwischen dem Ansaugventil und dem höchsten Austrittspunkt messen.
Die wirkliche elektrische LEISTUNG oder der ENERGIEVERBRAUCH für den geplanten Wasserfluss.
In Solarsystemen, die nur zum Wasserpumpen benutzt werden, kann die Systemreserve in der Gösse der Batteriebank berücksichtigt werden, oder es muss ein grösserer Speichertank vorgesehen werden. Das hängt hauptsächlich von den Kosten ab.
Im Folgenden behandeln wir ein kleines Einfamilien Wasserpumpsystem.
In der folgenden Seite wird ein etwas grösseres System behandelt, und danach ein Solares Wasserpumpensystem ohne Batterien oder für Bewässerung.
Berechnung des Energieverbauchs der Pumpe
Generell arbeitet man mit einem durchschnittlichen täglichen Wasserverbrauch einer Person von 90 bis 150 Litern in Nichturbanen Instalationen. Im Wesendlichen hängt es davon ab, ob WCs instaliert sind und ob mit dem Wasser Wäsche gewaschen wird. Ausserdem sollte man einen zukünftigen Anstieg des Wasserverbrauchs berücksichtigen, um das Solarsystem zu erweitern.
Man multipliziert den Tagesverbrauch mit der Anzahl der Personen. In diesem Fall 5 Personen multipliziert mit dem durchschnittlichen Tagesverbrauch von 100 l/p/d sind 500 l/d.
Die Pumpe erreicht in einen Wasserfluss von 1500 l/h bis zu einer Höhe von 20 m. Man dividiert den Tagesverbrauch von 500 l/d durch den Wasserflus der Pumpe 1500 l/h und erhält die Anzahl der Stunden die die Pumpe durchschnittlich arbeiten wird. In diesem Beispiel ungefähr 0,4 Stunden täglich.
Falls das Solarsystem nur zum Wasserpumpen benötigt wird, haben Sie auch die Möglichkeit eine spezielle Gleichstrompumpe DC einzusetzen, und können so den Wechselrichter einsparen.
*** Der Wechselrichter muss eine grössere Leistung als die Pumpe haben, weil Motoren und Pumpen in den ersten Sekunden des Startvorgangs ungefähr den vierfachen Stromverbrauch haben.
Anzahl

A
Verbraucher

B
Leistung
W
C
Leistung
W total
D = (A x C)
Stunden /
Tag
E
Energie
Wh
F= (D x E)
Berechnung der Panele und Batterien
Der Tagesverbrauch ist:

1 Panel mit 55 W produziert bei 3,5 h Sonne / Tag:

Für die Generierung der Energie braucht man:


Es müssen (12 V System) gespeichert werden:

Man benötigt die Anzahl stationärer Batterien 12 V 100 Ah (ohne Reserve*):

Man benötigt die Anzahl stationärer Batterien 12 V 100 Ah (mit 1 Tagesreserve*): 

Man benötigt die Anzahl stationärer Batterien 12 V 100 Ah (mit 3 Tagesreserven*): 
Wh/d

Wh/d

Panele


Ah


Batterien


Batterien


Batterien
Systemkosten
1 Solarpanel mit 55 W kostet ungefähr:

1 Stationäre Batterie** mit 12 V 100 Ah kostet ungefähr:

1 Regler (Batterieschutzgerät) mit 12 V 10 A kostet mehr oder weniger:

1 Wechselrichter APS mit 1000 W 110 V AC kostet ungefähr:
(Der Wechselrichter APS wandelt den Gleichstrom in netzüblichen Wechselstrom 110 oder 220 V AC)
Wir kakulieren keine Instalierungskosten, weil diese Anlage einfach zu montieren ist:

Total der Investition für dieses Solarsytem ist zwischen:
Bombas Solares
Bombas Solares
Bombeo de agua solar
Bombas Solares
Geräte für Sonnenenergie
Equipo para energia renovables
Energias Renovables
Corporación para el Desarrollo Sostenible CODESO
Energía solar
Wie funktioniert die elektrische Solar Energie?
Wie funktioniert die elektrische Solar Energie?
CI
English ingles Solar energy quito Ecuador South America
Deutsch Aleman Sonnenenergie Quito Ecuador S
Español
Paneles solares Ecuador Colombia peru bolivia venzuela sistemas generacion fotovoltaica bombeo agua potabilizacion consultorias
Sol Sonne Sun Foto Photo Bild
Fotos Photos Bilder Solar Energia Energy Energie
Energias renovables alternativas
paneles reguladores inversores
Renewable Energy South America
Energías Renovables Ecuador Sudamérica
Erneuerbare Energien Südamerika
Energia solar Energie Photovoltaik Photovoltaic Fotovoltaica
Paneles Solares Guayaquil Cuenca Quito
Termico fotovoltaico paneles energia
Renewable Energies America Latin
Geräte für Alternative Energien
Berechnungen für Solarektrifizierung
Solar electric injection island grid sma isla sunny boy
Energias renovables Ecuador Peru Colombia Lorentz bomba Ritter tubos vacio panels
Unabhängige Solarstromanlagen und GRID-Einspeisung (Stromnetz). Sicherung und Schutz von medizinischen Geräten und Computergeräten, Funkkommunikation, Elektrozäunen, Kraft-Wärme-Kopplung zusammen mit elektrothermischen Generatoren, Klimaanlagen usw.
SolarwasserpumpenPhotovoltaik-Wasserpumpensysteme
Solarwasserpumpen
Photovoltaik-Wasserpumpensysteme, für die keine Batterien erforderlich sind, machen einen sehr schnellen Return on Investment. Diese Systeme arbeiten vollautomatisch.
Bombeo de agua solar Sistemas de bombas de agua fotovoltaicos